IR-1553

M. A. / M. Sc. (First Semester) Examination, Dec. 2021

MATHEMATICS

Paper: Third

(Topology-I)

Time Allowed: Three hours

Maximum Marks: 40

Note: Attempt questions of all two sections as directed. Distribution of marks is given with sections.

Section-A

(Short Answer Type Questions) 5×3=15

Note: Attempt all the questions. Each question carries 3 marks.

Unit-I

1. Define a countable set. Show that a subset of a countable set is countable.

Or

Write the statement of Cantor's theorem and the continuum hypothesis.

Unit-II

2. Define the closure of a set in a topological space (X, J). Show that for $A, B \subset X$,

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

Or

Define the interior of a set in a topological space (X, J). Show that for $A, B \subset X$,

$$\operatorname{int}(A \cap B) = \operatorname{int} A \cap \operatorname{int} B$$

Unit-III

3. Define base for a topological space (X, \mathcal{J}) and give one examples.

131

Or

Write the definition of a continuous map $f: X \to Y$. Show that a constant map $C: X \to Y$ is continuous.

Unit-IV

4. Define a first countable space and give one example.

Or

Define a separable space and give one example.

Unit-V

5. Define a component in a topological space (X, J). Show that components are closed sets in X.

Or

Give example of a connected space which is not locally connected. Also give one example of a locally connected space which is not connected.

IR-1553

PTO

5×5=25

Note: Attempt all the five questions. Each question carries 5 marks.

Unit-I

Show that a countable union of countable sets is countable.

Or

Show that the following statements for a set A are equivalent:

- (i) There exists an injective function $f: \mathbb{Z}_+ \to A$.
- (ii) There exists a bijection of A with a proper subset of itself.
- (iii) A is infinite.

Unit-II

151

7. Let $X \neq \phi$ be a set and $\{ \exists \alpha \mid \alpha \in J \}$ be a family of topologies on X. Show that $J = \bigcap_{\alpha \in J} J_{\alpha}$ is again a topology on X.

Or

By using the de Morgan's rule show that in a topological space (X, J), an arbitrary intersection of closed sets is closed and a finite union of closed sets is closed.

Unit-III

8. Let X be a nonempty set and J, J' be two topologies on X having bases \mathcal{B} and \mathcal{B}' respectively. Show that J' is finer than J iff for each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

Or

Define a continuous map between two topological spaces (X, \mathcal{J}) and (Y, \mathcal{J}') and give one example. Show that the composition of two continuous maps is again continuous.

Unit-IV

 Show that a second countable is first countable. Give one example of a first countable space which is not second countables.

Unit-V

10. Define a path connected space. Show that a path connected space is connected. Give one example of a connected space which is not path connected.

Or

Show that a topological space (X, J) is locally connected if and only if for every open set \cup of X, each component of \cup is open in X.

ad real world of make more wind programmed in