JR-3531

M. A. / M. Sc. (Second Semester) Examination, June 2022

MATHEMATICS

Paper: Fifth (i) (Optional)

(Differential Equation-II)

Time Allowed: Three hours

Maximum Marks: 40

Note: Attempt questions of all two sections as directed.

Distribution of marks is given with sections.

Section-'A'

(Short Answer Type Questions) 5×3=15

Note: Attempt all five questions. Each question carries 03 marks.

Unit-I

1. Explain continuity with one example.

O

Explain higher order differentiability with one example.

Unit-II

2. Explain Autonomous system.

Or

Define rotation points with one example.

Unit-III

3. Describe Nonoscillatory equations and principal solution.

On

State Nonoscillation theorem.

Unit-IV

Explain the use of implicit function.

Or

Describe non-linear problem.

Unit-V

131

5. Explain second order boundary value problems.

Or

Explain linear problem in second order boundary value problem.

Section-'B'

(Long Answer Type Questions) 5×5=25

Note: Answer all five questions. Each question carries 05 marks.

Unit-I

6. Let f(t, y, z) be continuous on an open (t, y, z) – set E with property that for every $(t_0, y_0, z) \in E$, the initial value property.

$$y' = f(t, y, z)$$
 and $y(t_0) = y_0$

where for each fixed z has a unique solution $y(t) \equiv \eta(t, t_0, y_0, z)$. Let $w_- < t < w_+$ be the maximum

interval of existence of $y(t) = \eta(t, t_0, y_0 z)$. Then

PTO

 $w_+ = w_+ (t_0, y, z)$ in a lower (or upper) semi-continuous function of $(t_0, y_0, z) \in E$ and $\eta (t, t_0, y_0, z)$ is continuous on the set $w_- < t < w_+, (t_0, y_0, z) \in E$.

Or

Let $f(t, y, z, z^*)$ be a continuous function on an open (t, y, z, z^*) . Set E, where z^* is a vector of any dimention. Suppose that f has continuous first order partial derivative with respect to the components of y and z. Then

$$y' = f(t, y, z, z^*) y(t_0) = y_0$$

have a unique solution $\eta = (t, t_0, y_0, z, z^*)$ for fixed z, z^* with $(t_0, y_0, z, z^*) \in E$ η has first order partials with respect to t, t_0 the components of y and of z, and the second order partial

$$\frac{\partial^2 \eta}{\partial t \partial t_0}, \frac{\partial^2 \eta}{\partial t \partial y_0^k}, \frac{\partial^2 \eta}{\partial t \partial z^i}$$

Finally there partial of η are continuous with respect to (t, t_0, y_0, z, z^*) .

Unit-II

7. Let $f(y) = f(y^1, y^2)$ be continuous on an open plane set E and Let C^+ ; $y = y_+(t)$ be a solution of

$$y^{!} = f(y)$$

for $t \ge 0$ with a compact closure in E. In addition suppose that

$$y_+(t_1) \neq y_+(t_2)$$

for $0 \le t_1 \le t_2 < \infty$ and the $\Omega(C^+)$ contain no stationary points. Then $\Omega(C^+)$ in the set of points y on a periodic solution C_p : $y = y_p(t)$ of $y^1 = f(y)$.

Or

Explain Foci, Nodes and Saddle points.

Unit-III

8. State and prove that storm's first comparison theorem

O

Let f_1 , f_2 , be a sequence of elements of $L^2(a,b)$ satisfying $||f_n|| \le 1$. Then three exists an $f(t) \in L^2(a,b)$ and a subsequence $f_n(1)^{(t)} f_n(2)^{(t)}$, of the given sequence such that $||f|| \le 1$ and $f_n(j) \to f(t)$ weakly as $i \to \infty$.

Unit-IV

9. Let A(t) be continuous for $0 \le t \le p$ M, N constants $d \times d$ matrices such that the $d \times 2d$ matrix (M, N) is of rank d. Then

$$y' = A(t)y + g(t)$$

has a solution y(t) satisfying

$$M y(0) - N y(p) = 0$$

171

for every continuous g(t) if and only if y' = A(t)y and

$$M y(a) - N y(p) = 0$$

has no non-trivial solution in which can y(p) is unique and there exists a constant K independent of g(t) such that

$$||y(t)|| \le k \int_0^p ||g(s)|| ds \text{ for } 0 \le t \le p.$$

O

Explain linear equation with example.

Unit-V

10. Let B(t), F(t) be continuous for $0 \le t \le p$. Then

$$x^{\prime\prime} = B(t)x + F(t)x^{\prime} + h(t)$$

has a solution x(t) satisfying

$$x(0) = 0, x(p) = 0$$

JR-3531

for every L(t) continuous on [0, p] if and only if

$$x^{\prime\prime} = B(t)x + F(t)x^{\prime}$$

and
$$x(0) = 0$$
, $x(p) = 0$

has no non-trivial (≠ 0) solution.

Or

Explain a priory bounds with one example.