KR-2632

M. A. / M. Sc. (First Semester) Examination, Dec. 2022

MATHEMATICS

Paper: Second

(Real Analysis)

Time Allowed: Three hours

Maximum Marks: 40

Note: Attempt questions of all two sections as directed.

Section-'A'

(Short Answer Type Questions) 5×3=15

Note: Attempt all the five questions. One question from each unit is compulsory. Internal choice provided. Each question carries 03 marks.

Unit-I

1. Show that:

$$\int_{-a}^{b} f \, d\alpha \le \int_{a}^{-b} f \, d\alpha$$

Or

If $f \in \mathcal{R}(\alpha)$ on [a, b] and if $|f(x)| \le M$ on [a, b] then show that :

$$\left| \int_{a}^{b} f \, d\alpha \right| \leq M \left[\alpha \left(b \right) - \alpha \left(a \right) \right]$$

Unit-II

2. Define pointwise and uniform convergence.

Or

Define the rearrangement of terms of a series.

Unit-III

3. State and prove the Weierstrass M-test.

Or

Let $f_n(x) = \frac{nx}{1 + n^2 x^2}$, when $0 \le x \le 1$ and $n = 1, 2, 3, \dots$ Examine as to whether the sequence $\{f_n\}$ is uniformly convergent in [0, 1] or not.

Unit-IV

4. Define partial derivative.

Or

Let Ω be the set of all invertible linear operators on R^n and if $A \in \Omega$, $B \in L(R^n)$ and $\|B - A\| \cdot \|A^{-1}\| < 1$ then show that $B \in \Omega$.

5. If $u_1 = \frac{x_2 x_3}{x_1}$, $u_2 = \frac{x_1 x_3}{x_2}$, $u_3 = \frac{x_1 x_2}{x_3}$ then show that $J(u_1, u_2, u_3) = 4$.

Or

Define the differential forms.

Section-'B'

(Long Answer Type Questions) 5×5=25

Note: Attempt all the five questions. One question from each unit is compulsory. Each question carries 05 marks.

Unit-I

6. $f \in \mathcal{R}(\alpha)$ on [a, b] if and only if for every $\epsilon > 0$ there exists a partition P such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$$

Or

If $f \in \mathcal{R}(\alpha)$ on [a,b] and if a < c < b then $f \in \mathcal{R}(\alpha)$ on [a,c] and on [c,b] and $\int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha = \int_{a}^{b} f \, d\alpha$

Unit-II

7. If ϑ' is continuous on [a, b], then ϑ is rectifiable, and

$$\wedge (\vartheta) = \int_a^b |\vartheta'(t)| dt$$

Or

If \vec{f} maps [a, b] into R^K and if $\vec{f} \in \mathcal{R}(\alpha)$ for some monotonically increasing function α on [a, b], then $|\vec{f}| \in \mathcal{R}(\alpha)$ and $|\int_a^b \vec{f} \, d\alpha| \leq \int_a^b |\vec{f}| \, d\alpha$.

Unit-III

8. Let α be monotonically increasing on [a,b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a,b], for $n=1,2,3,\ldots$, and suppose $f_n \to f$ uniformly on [a,b]. Then $f_n \in \mathcal{R}(\alpha)$ on [a,b] and

$$\int_{a}^{b} f \, d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_{n} \, d\alpha$$

Or

The sequence of functions $\{f_n\}$ defined on E, converges uniformly on E if and only if for every $\epsilon > 0$ there exists an integer N such that $m \geq N$, $n \geq N$, $x \in E$ implies $|f_n(x) - f_m(x)| \leq \epsilon$.

Unit-IV

9. State and prove the chain rule.

Or

State and prove the Taylor's theorem.

Unit-V

10. State and prove the Stoke's theorem.

Or

State and prove the Implicit function theorem.