LR-2137

M. A./M. Sc. (Second Semester) Examination, May-June 2023
\section*{MATHEMATICS}

[Differential Geometry of Manifolds-III-V(iii)]
Time Allowed: Three hours
Maximum Marks : 40

Note : Attempt questions of all two sections as directed.
Distribution of marks is given with sections.
Section- ${ }^{-} \mathrm{A}^{\prime}$
(Short Answer Type Questions) $\quad 5 \times 3=15$
Note: Attempt all five questions. Each question carries 3 marks.

Unit-I

1. What is a vector bundle over a manifold, explain.

Or

Define a vector bundle and give examples.

Unit-III

2. What is a Riemannian manifold, explain.

Or

Explain Riemannian connection.

Unit-IIII

3. Define a Geodesic.

Or

What is conformed curvature tensor.

Unit-IV

4. Define a submanifold and give example.

Or
Explain Hypersurfaces.

Unit-V

5. What is an almost complex manifold, explain.

Or

Define Nijenhuis tensor.

Section-B

(Long Answer Type Questions)
$5 \times 5=25$

Note : Attempt all five questions. One question from each unit is compulsory. Each question carries 05 marks. Word limit to each question is 800 .

Unit-I

6. Describe in details induced bundle with examples.

Or

What is a bundle homomorphism, explain with examples.

Or

What is an induced bundle, explain with detailed examples.

Unit-II

7. State and prove Schur's theorem.

Or

What is a Riemannian connection, explain giving examples.

| 4 |

Unit-IIII

8. Prove that for a Riemannian symmetric space any C^{\prime} curve is invariant under each of its points is a representation of a geodesic.

Or

Describe the projective curvature tensor and discuss its properties.

Unit-IV

9. State and prove the Gauss's formulae.

Or

State and prove the generalized Gauss and Mainardi Codazzi equation.

Unit-V

10. Explain contravariant almost analytic vector fields giving examples.

Or

What is F-connection, explain.

