LR-2152

M. A. / M. Sc. (Fourth Semester) Examination, May-June 2023

MATHEMATICS
Paper : First-(Optional Group-I)
(Advanced Functional Analysis-II)
Time Allowed : Three hours
Maximum Marks : 40
Note : Attempt questions of all two sections as directed. Distribution of marks is given with sections. Symbols have their usual meanings.

Section- ${ }^{6} A^{\prime}$

(Short Answer Type Questions) $5 \times 3=15$
Note: Attempt all five questions. One question from each unit is compulsory. Each question carries 3 marks.

Unit-I

1. Define Finite-dimensional spaces with example.

Or

If X is a locally bounded topological vector space with the Heine-Borel property, then X has finite dimension.

Unit-III

2. Define F-spaces with example.

Or
Write the statement of the open mapping theorem.

Unit-IIII

3. Define Bornological spaces with example.

Or
Define Baralled spaces with example.

Unit-IV

4. What do you mean by Schwarz spaces? Explain.

Or
Define Reflexive topological vector spaces.

Unit-V

5. Define test function spaces with example.
[3]
Explain Lebesgue measurable.

Section- ${ }^{\prime}{ }^{B}$ '

(Long Answer Type Questions) $5 \times 5=25$
Note : Attempt all five questions. One question from each unit is compulsory. Each question carries 5 marks.

Unit-I

6. State and prove Hahn-Banach theorem.

Or

If X is a locally bounded topological vector space with the Heine-Borel property then X has finite dimension.

Unit-II

7. If $B: X \times Y \rightarrow Z$ is bilinear and separately continuous, X is an F -space, and Y and Z are topological vector spaces. Then

$$
B\left(x_{n}, y_{n}\right) \rightarrow B\left(x_{0}, y_{0}\right) \text { in } z
$$

whenever $x_{n} \rightarrow x_{0}$ in X and $y_{n} \rightarrow y_{0}$ in y. If X is metrizable, it follows that B is continuous.

Or

State and prove the closed graph theorem.

Unit-III

8. State and prove Bipolar theorem.

Or

Explain duality polar with example.

Unit-IV

9. Define the following :
(i) Semi-reflexive topological vector spaces
(ii) Macekey spaces
(iii) Mantel spaces

Or

Explain Quasi-completeness.

Unit-V

10. Show that $D(\dot{\Omega})$ has the Heine-Borel property.

Or

If \wedge is a linear mapping of $l)(\Omega)$ into a locally convex space Y. Then :
(i) \wedge is continuous
(ii) \wedge is bounded

