LR-2136

M.A./M. Sc. (Second Semester) Examination, May-June 2023

MATHEMATICS

Paper : Fifth (ii) (Optional)

(Advanced Discrete Mathematics-II)

Time Allowed : Three hours

Maximum Marks: 40

Note : Attempt questions of all **two** sections as directed. Distribution of marks is given with sections.

Section-'A'

(Short Answer Type Questions) 5×3=15

Note: Attempt all five questions. Each question carries 3 marks.

LR-2136

PTO

1. Define Isomorphic directed graph with an example.

Or

Describe sources and types of directed graphs.

2. Design a finite state machine that perform several additions.

Or

Describe equivalent finite state machines.

 Describe an important distinction between a deterministic and a non-deterministic acceptor.

Or

Define finite automata Mealy machine.

4. Describe partial recursive functions.

Or

Define Grammar with a phrase structure.

5. Define language generated by grammar.

Or

Explain Language Regular sets.

LR-2136

|3|

Section-'B'

(Long Answer Type Questions) 5×5=25

Note : Attempt all five questions. Each question carries 5 marks.

6. The determinent of every square sub-matrix of A, the incidence matrix of a digraph is 1, -1 or 0.

Or

In a simple digraph G = (V, E), every node of the digarph lies in exactly one strong component.

7. Let *M* be the finite state machine with given state table :

State	f		g	
	0	1	0	1
s ₀	s ₁	s ₂	0	0
s ₁	s ₀	s ₁	0	1
<i>s</i> ₂	<i>s</i> ₁	s ₂	. 1	0
s <u>3</u>	s ₁	<i>s</i> ₂	1	1

(a) Find the input set I, state set S, the output set () and the initial state of M.

LR-2136

[4]

- (b) Draw the state diagram of M.
- (c) Find the output string of the input string 01001.

Or

Let x be any in a finite state machine and let x and y be any words. Then

$$f((s, x), y) = f(f(s, x), y)$$
 and

$$g(s, x, y) = g(f(s, x), y)$$

8. Consider the transition diagram shown in fig.

- (a) Find its states
- (b) Find its output symbol
- (c) Find its initial state
- (d) Find its accepting states
- (e) Find $f(s_2, 1)$
- (f) Write its next state table

Find the transition diagram for the *NDFSM*, $M = (I, S, A, S_0, F)$, where

$$I = \{a, b\}, S = \{s_0, s_1, s_2\}, A = \{s_0\}$$

and the next state function f is given by table given below :

	S	t
I/S	а	b
<i>s</i> ₀	Φ	$\left\{ s_{1},s_{2}\right\}$
<i>s</i> ₁	$\{s_1\}$	$\{s_0, s_1\}$
<i>s</i> ₂	$\{s_0\}$	Φ

US hands

9. Let

$$V = \{S, C\}, I = \{a, b\}, P = \{A \to aC_a, C \to aC_a, C \to b\}$$

Find L(G).

Or

Define the phase structure grammar and find the phase structure grammar that generate the set.

$$L = \{a^n, b^{2n} ; n \ge 1\}$$

10. Define sentential form. The language

$$L(G_n) = \left\{ a^n b^n c^n / n \ge 1 \right\}$$

is generated by the following grammar.

$$G_n = \langle \{S, B, C\}, \{a, b, c\}, S, \Phi \rangle$$

Where Φ consists of the productions.

Or

State and prove Kleenes theorem.

LR-2136

800]