LR-2136

M. A./M. Sc. (Second Semester) Examination, May-June 2023
 MATHEMATICS

Paper: Fifth (ii) (Optional)
 (Advanced Discrete Mathematics-II)

Time Allowed : Three hours
Maximum Marks : 40

Note : Attempt questions of all two sections as directed. Distribution of marks is given with sections.

Section-'A'

(Short Answer Type Questions) $\quad 5 \times 3=15$

Note: Attempt all five questions. Each question carries 3 marks.

12 |

1. Define Isomorphic directed graph with an example.

Or

Describe sources and types of directed graphs.
2. Design a finite state machine that perform several additions.

Or

Describe equivalent finite state machines.
3. Describe an important distinction between a deterministic and a non-deterministic acceptor:

Or

Define finite automata Mealy machine.
4. Describe partial recursive functions.

Or

Define Grammar with a phrase structure.
5. Define language generated by grammar.

Or

Explain Language Regular sets.

Section-' ${ }^{\prime}$ '

Note: Attempt all five questions. Each question carries 5 marks.
6. The determinent of every square sub-matrix of A, the incidence matrix of a digraph is $1,-1$ or 0 .

Or

In a simple digraph $G=(V, E)$, every node of the digarph lies in exactly one strong component.
7. Let M be the finite state machine with given state table :

State	f		g	
	0	1	0	1
s_{0}	s_{1}	s_{2}	0	0
s_{1}	s_{0}	s_{1}	0	1
s_{2}	s_{1}	s_{2}	1	0
s_{3}	s_{1}	s_{2}	1	1

(a) Find the input set I, state set S, the output set () and the initial state of M.

| 4 |

(b) Draw the state diagram of M.
(c) Find the output string of the input string 01001 .

Or

Let x be any in a finite state machine and let x and y be any words. Then

$$
\begin{aligned}
& f((s, x), y)=f(f(s, x), y) \text { and } \\
& g(s, x, y)=g(f(s, x), y)
\end{aligned}
$$

8. Consider the transition diagram shown in fig.
(a) Find its states
(b) Find its output symbol
(c) Find its initial state
(d) Find its accepting states
(e) Find $f\left(s_{2}, 1\right)$
(f) Write its next state table

Find the transition diagram for the NDFSM, $M=(I, S$, $\left.A, S_{0}, F\right)$, where

$$
I=\{a, b\}, S=\left\{s_{0}, s_{1}, s_{2}\right\}, A=\left\{s_{0}\right\}
$$

and the next state function f is given by table given below :

	s	t
I / S	a	b
s_{0}	Φ	$\left\{s_{1}, s_{2}\right\}$
s_{1}	$\left\{s_{1}\right\}$	$\left\{s_{0}, s_{1}\right\}$
s_{2}	$\left\{s_{0}\right\}$	Φ

9. Let

$$
\begin{aligned}
V=\{S, C\}, I=\{a, b\}, P & =\left\{A \rightarrow a C_{"}^{\prime},\right. \\
C & \left.\rightarrow a C_{a}^{\prime}, C^{\prime} \rightarrow b\right\}
\end{aligned}
$$

Find $L(G)$.

Or

Define the phase structure grammar and find the phase structure grammar that generate the set.

$$
L=\left\{a^{n}, b^{2 n} ; n \geq 1\right\}
$$

10. Define sentential form. The language

$$
L\left(G_{n}\right)=\left\{a^{n} b^{n} c^{n} / n \geq 1\right\}
$$

is generated by the following grammar.

$$
G_{n}=\langle\{S, B, C\},\{a, b, c\}, S, \Phi\rangle
$$

Where Φ consists of the productions.

Or

State and prove Kleenes theorem.

