G-906

B. Sc. (Second Year) Examination, 2024
(N.E.P.) / (Major-II/Minor/Elective)

MATHEMATICS-II
(Advanced Calculus \& Partial Differential Equations)
(उच्चकलन एवं आंशिक अवकल समीकरण)
Time Allowed : Three hours
Maximum Marks : 70
Minimum Pass Marks : 25
नोट : सभी तीनों खण्डों के प्रश्न निर्देशानुसार करें। अंकों का विभाजन खण्डों के साथ दिया जा रहा है।
Note: Attempt questions of all three sections as directed. Distribution of marks is given with sections.

खण्ड-'अ'

Section- ${ }^{\text {A }}$ '
(वस्तुनिष्ठ प्रश्न) $\quad 5 \times 2=10$
(Objective Type Questions)
नोट : सभी पाँच प्रश्नों के उत्तर दीजिए। प्रत्येक प्रश्न 2 अंकों का है।
Note: Attempt all five questions. Each question carries 2 marks.

1. (i) निम्न में से कौन-सा पूर्ण क्रमित क्षेत्र है-
(a) R
(b) Q
(c) $R \quad Q$
(d) $R+Q$

Which one of the following is a complete ordered field?
(a) R
(b) Q
(c) $R-Q$
(d) $R+Q$
(ii) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ बराबर है-
(a) $\frac{1}{e}$
(b) e
(c) 1
(d) 0
$\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ is equal to :
(a) $\frac{1}{e}$
(b) e
(c) 1
(d) 0
$\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ का मान होगा-
(a) 0
(b) 1
(c) -1
(d) 2

The value of $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ will be:
(a) 0
(b) 1
(c) -1
(d) 2
(iv) $z=a x+b y+a^{2}+b^{2}$ का अवकल समीकरण है--
(a) $z=a x+b p$
(b) $z=p x+q y+p^{2}+q^{2}$
(c) $z=p x+q y$
(d) $z=p^{2}+q^{2}$

The differential equations $z=a x+b y+a^{2}+b^{2}$
is :
(a) $z=a x+b p$
(b) $z=p x+q y+p^{2}+q^{2}$
(c) $z=p x+q y$
(d) $z=p^{2}+q^{2}$
(v) अवकल समीकरण $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=0$ का हल है-
(a) $z=\phi_{1}(y+x)+\phi_{2}(y-x)$
(b) $z=\phi_{1}(x)+x \phi_{2}(y)$
(c) $z=x \phi_{1}(x+y)+\phi_{3}(x-y)$
(d) $Z=\phi_{1}(x+y)+x \phi_{3}(x-y)$

The solution of the differential equation $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=0$ is :
(a) $z=\phi_{1}(y+x)+\phi_{2}(y-x)$
(b) $z=\phi_{1}(x)+x \phi_{2}(y)$
(c) $z=x \phi_{1}(x+y)+\phi_{3}(x-y)$
(d) $Z=\phi_{1}(x+y)+x \phi_{3}(x-y)$

खण्ड-'ब'
 Section-'B'
 (लघु उत्तरीय प्रश्न)

(Short Answer Type Questions)

नोट : पाँच प्रश्नों में से चार प्रश्न हल कीजिए। प्रत्येक प्रश्न 7 अंकों का है।
Note: Attempt four questions out of the five questions.
Each question carries 7 marks.
2. कलन में बौधायन के निष्कर्षों पर एक संक्षिप्त टिप्पणी लिखिये।

Write a short note on Bodhayana's finding in calculus.
3. प्रत्येक अभिसारी अनुक्रम परिबद्ध होता है परन्तु इसका विलोम सत्य नहीं है।

Every convergent sequence is bounded bui the converse is not true.
4. यदि $u_{1}=\frac{x_{2} x_{3}}{x_{1}}, u_{2}=\frac{x_{1} x_{3}}{x_{2}}$ एवं $u_{3}=\frac{x_{1} x_{2}}{x_{3}}$ है तो सिद्ध कीजिए कि-

$$
J\left(u_{1}, u_{2}, u_{3}\right)=4
$$

16 |
If $u_{1}=\frac{x_{2} x_{3}}{x_{1}}, u_{2}=\frac{x_{1} x_{3}}{x_{2}}$ and $u_{3}=\frac{x_{1} x_{2}}{x_{3}}$, then prove that:

$$
J\left(u_{1}, u_{2}, u_{3}\right)=4
$$

5. निम्न से a, b, c का विलोपन करके एक आंशिक अवकल समीकरण ज्ञात कीजिये-

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Form a partial differential equation by eliminating a, b, c from :

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

6. हल कीजिए-

$$
\left(D^{2}-D D^{\prime}-6 D^{\prime 2}\right) z=x y
$$

Prove that :

$$
\left(D^{2}-D D^{\prime}-6 D^{\prime 2}\right) z=x y
$$

(दीर्घ उत्रीय्य प्रश्न)
(Long Answer Type Questions)
2×16:3
माँच से किन्हीं दो प्रश्नों के उत्तर दीजिए।
Note: Attempt any two questions aut of five
7. सिद्ध कीजिए कि $\sqrt{2}$ एक अपरिमेय संख्या है।

Prove that $\sqrt{2}$ is an irrational numbers.
8. माध्यमान प्रमेय से सिद्ध कीजिये कि $1+x<e^{x}<1+x e^{x}$,
जहाँ $x \geq 0$ ।

Prove by mean value theorem, that $1+x<e^{x}<1+x e^{x}$,
wh $x>0$.
9. सिद्ध कीजिए-

$$
\frac{\partial(u, v, w)}{\partial(x, y, z)} \times \frac{\partial(x, y, z)}{\partial(u, v, w)}=J_{. J^{\prime}}=1
$$

Prove that :

181

$$
\frac{\partial(u, v, w)}{\partial(x, y, z)} \times \frac{\partial(x, y, z)}{\partial(u, v, w)}=J . J^{\prime}=1
$$

10. चारपिट विधि से हल कीजिए-

$$
p x+q y=p q
$$

Solve by Charpit's method

$$
p x+q y=p q
$$

11. समीकरण $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=0$ का वर्गीकरण कीजिए और हल

कीजिए।
Classify and solve the equation

$$
\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=0
$$

